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Cun1ulative Search-Evasion Gan1es (CSEGs) 
J ames N . E a gle Alan R . W ashb urn 

Department of Operations Research 
Naval Postgraduate School 

Monterey, CA 93943 

CSEGs are search-evasion games where play proceeds throughout some specified period without 

any interim feedback to either of the two players, each of whom is assumed to move according to 

some preselected plan. If (Xt. Yd are the positions of the two players at timet. then the payoff is 

N = L.T=l A(Xt, 1i, t ). That is, the payoff is a cumulative score over the time intenals 1, ... , T. 

One possibili ty is t hat A(Xt, Yt, t) is an indicator of the event Xt = Yt. in which case 1\' is the 

total number of coincidences. This is the definition that motivated the class, but it is not the only 

possibili ty. 

Both players are assumed to move among some finite set of cells C. liutial positions in C 

are determined by probability distributions which are known to both players. One possibility is 

that the di stributions correspond to specific starting cells. This will be the case in a subsequent 

example, but, again, i t is not required. 

Given his initial position X 1 and the assumed distribution for player 2's initial celL player 1 

must select a feasible track X 1 ,Xz .... . Xr. A track is feasible if Xt+l lies in the given set S(Xt. t) 

for 1 ::; t::; T- 1. These tracks are player 1 's pure strategies. Li kewise Yt+l must lie in the given 

set E (Yt . i) for 1::; t::; T -1. Generally S(i,t) and E(i,t) include cell i and some of its neighbors. 

the idea b ei ng that feasible tracks should connect neighboring cells. The pa)·off is determined ouce 

the tracks are selected by both players. Player 1 attempts to maximize the expected payoff. E[.Y]. 

and player 2 to minimize. Given the interpretation of the problem. it is natural to expect optimal 

strategies for both sides to be mixed. 

1. Discussion and l\1otivaticn 

One might prefer to consider a similar class of games where the pure strateg)· payoff is 1-c--"·. since 

that quanti ty can be interpreted as a detection probability if A(x, y. t) is ''detection rate at timet'' 

(Koopman (1980)). Alternatively one might let the payoff be "time to the first detectioll ... as in 

Ruckle's (1983) P ursuit on a Graph game. Such detection games are of considerable operational 

interest . Single player versions where player 2's motion is according to a spfcijifd ~larkov proces~ 

have been consi dered by Stewart (1979,1980). Eagle (1984), and Trummel and \Yeisinger (19"G). 

and there is a more extensive literature (Stone (1989)) if the searcher's path is not constrained. It 

would indeed be sa tisfying to find au efficient method for solving the corresponding detection ganw~ 

where the evader's pa th is not probabilisticall)· specified. and where he can thus more completely 

live up to hi s title. Unfortunately, t he methods to be introduced later are tailored to tltP payoff X. 



rather than 1- c-1\·. Of course 1- e-N is approximately equal to l\" when N is small, so CSEGs can 

be regarded as first order approximations to detection games. The scale of A(·,·,·) is immaterial 

in solving a CSEG , but the validity of the approximation to a detection game will be best when 

A(· ,·,·) is small. 

Direct motivation of CSEGs is also possible. There are a variety of reasons why the results of 

search might not be known until it is over. Photographic film might have to be developed or nets 

hauled in. Another possible application is search planning for autonomous vehicles; for example, 

an over-the-horizon unmanned aircraft whose track must be specified before launch. Also, there is 

no real reason in CSEGs for restricting the two sides to consist of a single agent each. The two 

sides might be teams or even armies, one seeking contact and the other desirous of avoiding it. 

The "no feedback" restriction might then be viewed as a natural consequence of the difficulties of 

communication in the field. 

Although the payoff in a CSEG has the same form as in a Multi-Stage Game (Thomas(1984)), 

CSEGs are not IviSGs. To make an MSG out of a CSEG one would have to reveal the position 

of each player to the other after each move, so that the joint position could serve as a "state.'1 

Although such games are interesting, they are not what we have in mind here. 

2. Initial Observations 

CSEGs are finite. two-person zero-sum games, so solutions certainly exist. The straightforward way 

to proceed would be to list all feasible tracks and then use linear programming to find the optimal 

probabilities for each track. The difficulty with this is that the number of feasible tracks explodes 

rapidly with the size of the problem. If the sets S(i. t) all have three elements, and if the initial 

dis tribution for player 1 's position is also concentrated on three points, there are 3T pure strategies 

for player 1. This kind of exponential growth makes the "brute force" approach impractical for 

even moderately sized problems. The object must be to take advantage of the special structure of 

CSEGs to develop more efficient methods. 

A mixed strategy for either player is a discrete probability distribution over the possible feasible 

tracks. Given mixed strategies for players 1 and 2, let p( i, t) be the marginal probability that 

player 1 visits cell i at timet. Likewise let q(i,t) be the corresponding probability for player 2. 

Then since the expectation of a sum is the sum of expectations, and since the two players choose 

their strategies independently, 

T 

E[N] = L L A(i,j, t)p(i, t)q(j, t). 
t=l i,jEC 

This payoff depends only on the marginal distributions p(·, ·)and q(·, ·),so there is the possibility of 

an analysis based directly on them 1 rather than on the mixed strategies themselves. Furthermore. 

when p(· , ·)is given. player 2's problem in selecting an optimal track is aT-period shortest path 



problem , a relatively simple type that can be solved quickly even for larg(' problems. To see tl!is.lr>t 

D(j, t) = LiEC A(i,j, t )p(i. t) be the penalty associat<:>d with visiting cell j at time l. Tl!eu player 2 

wants to find a feasibl e track that visits the cells in such a mau1wr as to minimize tltr> sum of all 

T such penalties , a shortest path problem that can easily be solved usiiig dyuamic programming. 

Given a mixed strategy for player 1, this shortest path solution gives a lower bound on the valur• 

of the game. Similar comments hold concerning player 1's selection of a track wl1en q(-. ·)is given. 

T he fact that a lower bound on the value of the game is determined by specifying p(·, ·) aud solvi11g 

a shortest path problem . and that an upper bound is found by specifying q( ·,·)and solving a longest 

path problem will prove invaluable in the techniques to be discussed in the following sections. 

CSEGs often have a ''turnpike" property (\\'hittle (1983)) in the sense that optimal marginal 

distributions are attracted to a certain equilibrium pair (p*(·. ·), q*(·. ·)) .. More precisely, let v(t) b<:> 

the value of the one-period matrix game A(-,·. t), and let p*(·, t) and q*(·, t) he optimal mix('d 

strategies for the two players, unrestricted except that each must be a discrete probability distri­

bution over the cells in C. If p* (-,t) and q*(-,t) are feasible marginal distributions for each tim(l 

period of aT-period CSEG, then they must also be optimal. Furthermore, the value of the CSEG 

is 2:: '{= 1 v(t). In general the feasibility requirement will fail because p(-. t) and q( ·, t) are required 

by t he path constraints to resemble the initial distributious for small values oft. However, we call 

say 

Theorem 1. Suppose p(-, ·) and q(-. ·) orE optimal for the T1 -pc riod CSEG, suppose T2 > T1, and 

let 
(fi(·. t ).q(-,t)) = { (p~·.t).q(·;t)) fort :S T1 

· (p (·,t),q (·.t)) for T1 < t :S T2. 

Iffi(-,·) and q( ·,·) are fwsiblefor the T2-period CSEG, then they arc also optimal. 

Proof: Let E [N(T)] be the expected payoff and \ "(T) be the value of the T-period CSEG. Siuc(' 

p( ·, ·) is optimal for the 11-period game. E[ X( TI)] 2: F ( TI) when player 1 uses p( ·. ·) and player 2 

uses any feasible mixed strategy. Since jj( ·, ·) agrees with p(-, ·)for t :S T1. the same cau be said of 

fi(-, ·). Therefore if player 1 u ses j>(-. ·), 

T2 

E[S(T2 )] 2: \ r(TI) + L v(t). 
t=T1 +1 

Likewise if player 2 uses q( ·. · ). 

T2 

E[X (T2 )] ::; F(TI) + L v(t). 
t=T1 +1 

The theorem follows. Furthermore. the value of the T2-period CSEG is 

T2 

\ T( T2)=\ T(T1)+ L t•(t). l 
t=T1+I 



If (i) A(·.·,t) does not actually depend on t, then neither will p'"(-,t) nor q*(-,t). Additionally, 

if (ii) the path constraints allow both players to remain stationary, then these two "equilibrium" 

distributions will be feasible at t + 1 if they are feasible at t. Finally, if (i) and (ii) hold plus 

p*(·,·) and q*(-.·) are feasible at timet, then p*(·,·) and q*(·,·) are feasible and optimal marginal 

distributions from t onward. Solving the CSEG can then be viewed as programming the two sides to 

move from the given initial position distributions to equilibrium distributions. Only the transient 

phase presents any computational difficulty; once the equilibrium distributions are encountered, 

they are feasible and optimal from that point on. \Ve now turn to methods for solving specific 

CSEGs. 

3. The Brown-Robinson Method 

In Robinson (1951 ), the method of fictitious play was shown to iteratively solve two-person zero-sum 

matrix games. This procedure had been suggested earlier by G. \V. Brown. To describe fictitious 

play, let player 1 be the row (maximizing) player and player 2 be the column (minimizing) player. 

Rows and columns correspond to the pure strategies (tracks) described earlier. If player 1 selects 

row i and player 2 selects column j, then reward aij is paid from player 2 to player 1. In each 

fictitious play of the game (except the first), the players select the best pure strategy response to 

the empirical mix of the opponent's pure strategies observed so far. So at play k 2: 2, player 1 

chooses the pure strategy Xk (a vector where every component but one is 0) that is a best response 

to 
1 k-1 1 

!h = k- 1 LYt = !h-1 + k- 1 (Yk-1 -Ih-d, 
t=l 

where Yt is the pure strategy played by player 2 at timet. Then player 2 chooses the pure strategy 

Yk, which is the best response to the updated row average 

Any limit points of the sequences {xk} and {]h} are solutions to the game. Also upper and 

lower bounds on the value of the game, v, are determined at each game play. Specifically, at game 

play k, 

and both ll..k and 1h converge to v. Fictitious play begins with the players selecting arbitrary 

strategies (pure or mixed) x1 = 'Xr and Y1 = "'fh. 
\Ve note that to solve a matrix game by fictitious play, each player need only be able to select 

a best pure strategy response to any mixed strategy and evaluate the expected return. For CSEGs. 

this means that for fictitious play number k 2: 2, player 1 must be able to first update the running 



average of the previously observed k - 1 pure strategies played by player '2 , aud th(~n solve tltP T 

period longest path problem giving the best pure stra tegy response for player 1. Similarly. pla~·0r 2 

must be abl e to u pdate th e running average of th e previously observed h pun· strategi~s playPd 

by player 1, and then solve t he shortest path problem gi viug the best pure strategy responsr> for 

player 2. The procedure begi ns with both players selecting arbi t rary T- perio d st rategies. 

The Brown-Robinson method is notori ous for converging very slowly to t he op timal solution. 

However the simpli city of t he updating procedure, which allows solution of modera te sized problPms 

on microcomputers, makes i t a ppealing for CSEGs. 

4. The Linear Programming (LP ) Method 

It has been mentioned that CSEGs could conceivably be solved with LP methods if all pure strate­

gies are enumera ted. In thi s sect ion an LP formu lation is present ed v;hich does not require this 

explicit enumerat ion yet , unlike ficti ti ous play, solves the game exact ly. 

To set up the LP, fi rst let g(j, t ) be the smallest possible payoff accum ul ated over periods 

t , t + 1, ... , T , given that player 2 st a rts in cell j at t ime t and that player 1 's mi xed strategy has 

marginals p( ·, ·). Then 

g(j, t ) = 2:: A(i , j, t)p (i~ t ) + mi n g(k. t + 1 ) . 
. C kEE(j,t ) 
tE 

( 1 ) 

Since player 2 's location at ti me 1 Is specified by the di stribut ion q(·) , pla~·er 1 's object is to 

maximize E[N ] = :L iEC q(i)g( i, 1 ). 

The fea.sibili ty (i .e., path) const rai nt s are incorporated by introducing u( i , j , t ) as t he proba­

bility that player 1 visits cell i at timet and cell j at time t + 1. Then t he marginal variables p( ·. · ) 

can be dispensed with b ecause 

or alternatively. 

p(i, t )= I: u(i,j . t); iEC,t = 1 .... . T-1; 
jES(i,t) 

p(i . t) = I: u(j.i, t -1): i E C, t = 2 .... . 1'. 
jES" (i,t ) 

(2) 

(3) 

Here S*( i , t ) = {j E Cli E S(j, t- 1 )} for i in C and t = 2, .. . , Ti s "the set of cell s pl a~·er 1 might 

have come from .'' T hi s is di st inguished from S( i, t) , v:h.ich is ''the se t of cells to which pla~·er 1 

might go." As long as th e right hand si des of (2) and (3) are equal , the common value is a feasible 

marginal distributi on for player 1. Using only th e u( ·,·,·), g(- .· ), and p(· .T ) varia bles . player 1's 

problem is the following LP (the indicated dual variables will lat er be associated wit h pla~·er ~·s 

LP): 



subject to: 

L u(i,k,1)=p(i); iEC 
kES(i,l) 

ma.xjmize Lq(i)g(i,1) 
iEC 

- L u(j.i,t -1)+ L u(i,k,t) = 0; i E C,t = 2, ... ,T-1 
jES•(i,t) kES(i,t) 

- L u(j, i, T- 1) + p(i, T) = 0; i E C 
jES•(i,T) 

- L A(i,k,T)p(k,T) + g(i,T) ~ 0; i E c 
kEG 

dual variables 

h( i, 1) 

h( i' t) 

h( i, T) 

q( i, T) 

- LA(i,j,t) L u(i,l,t) g(k,t + 1) + g(j,t) ~ 0; j E C,k E E(l;:,t), v(j,k,t) 
iEC IES(i,t) t=1, ... ,T-1 

u(i,j,t) ~ 0; i,j E C, t = 1, ... ,T-1 

p( i, T) ~ 0; i E C 

(4) 

(5) 

(6) 

(7) 

(8) 

Constraints (4) enforce the starting conrution p(i. 1) = p(i); constraints (5) enforce the equality of 

(2) and (3): constraints (6) and (7) are the appropriate terminal conditions for p(i,T) and g(i,T): 

and constraints (8) are implied by (1 ). A proof that (8) and (1) are actually eqillvalent, and that the 

solution of the LP is therefore the solution of the game, could be based on an inductive argument 

that the objective function cannot be ma.xjmal unless at least one (8)-type constraint is tight for 

each (j, t). However, it is simpler to merely observe that the solution of this LP is in any case a 

lower bound on the value of the game, and to conclude equality from the fact that the dual of this 

LP is the corresponrung minimization problem for player 2. 

Thls duality relationshlp 'vill also allow us to identify the optimal solution for one player from 

the optimal dual variables in hls opponent's LP. To see this, let v(i,j, t) be player 2's counterpart 

to u(i,j, t), and let h(i, t) be the ma.xjmum obtainable expected total reward when player 1 starts 

in cell i at time t and player 2 uses v(·, ·, ·). Then the problem player 2 must solve, whlch is the 

dual of player 1 's LP, is 



mmaruze LP(i)h(i~1) 

subj ect t o: 

L v(i,k,1)=q(i); iEC 
kEE( i,l) 

tEC 

- L v (j' i' t - 1 ) + L v ( i' k' t) = 0: i E c' t = 2' ... ' T - 1 
j EE•( i, t) kEE(i,t) 

- L v(j,i,T-1)+q(i,T)=O; iEC 
j EE *(i ,T) 

- L A(i, k . T)q(k. T) + h(i, T) 2: 0; i E c 
kE G 

- L A(i,j.t) L v(j,l,t) - h(k.t + 1) + h(i,t) 2:0: i E C,/, E S(i,t), 
jE C IEE(J,t) t = 1 .... 'T - 1 

v(i , j . t ) 2: 0; i.j E C. t = 1, .. . ,T -1 

q( i, T) 2: 0; i E C 

dual variablr>s 

g(i, 1) (9) 

g(i. t) 

g(i,T) ( 11) 

p( i, T) (12) 

u ( i' ''· t) (13) 

Player 1's LP can be made smaller by using (6) to solve for p(i. T) and then substituting into 

(7). Thi s eli minates constraints (6) and variables p(i. T). Likewise constraints (11) and variabl0s 

q( i , T ) can be eliminated from player 2's LP. After these simpliftcations. the number of variables 

in player 1's LP is the number of nodes plus the number of arcs in the T-period network specified 

by constraints ( 4) and (5 ). Similarly, the number of variables in player 2's smaller problem is 

the numb er of nodes plus arcs defined by constraints (9) and (10). Furthermore, the number of 

constraint s in one player's LP is equal to the number of variables in his opponent's problem. So 

for both pl ayers, the number of variables and constraints expands linear!~· with T rather than 

exponent ially. Thus for other than very small problems, solving tltese LPs is less burdensome than 

the "brut e fo rce" LP procedure mentioned earlier. 

\ ,Vhen compared to fictitious play. the LP procedure's primary advantage is that exact answer~ 

a re produced. O ne would expect to resort to fictit ious play only when the LP problem size excePd~ 

the capability of available LP solvers. 

5. T he One-Di men sional Game 

Consider a CSEG where 2n cells (n 2: 1) are arranged linearly with the searcher (player 1) initially 

in cell 1 an d t he evader (player 2) initially in cell 2n. Transitions to neighboring cells are possible. 

or either party may remain stationary. Thus, except for end cells 1 and 2n. E(i. t) = S(i. t) = 
E*(i. t) = S*( i, t ) = { i- 1, i, i + 1} for all t. The payoff at time t is 1 if searcher and evader are in 

the same cell. otherwi se 0. The equilibrium distributions p*(·. t) and q*( ·. t) are easily demonstrated 



to be uniform, so for large T we expect the value of the T-period game to be Vn (T) = T /2n- A" n 

for some ]( n. Questions of interest are: 

• Is A"n predictable, and what does "large T " mean? 

• \Vhat is the nature of the optimal strategies? 

One reasonable strategy for the evader is what we will call "spreading.'' Th e idea is to achieve 

the equilibrium distribution as fast as possible, and while doing so to assure that every cell feasible 

for the searcher contains at most the equilibrium probability. Spreading is not feasible in every 

CSEG, but the evader has no trouble employing it in the game under consideration. Figure 1 shows 

a spreading strategy when there are four cells. 

1 

.25 

.25 

Cell 

2 3 

·.:25: 

. 25 . 25 

.25 . 25 

. 25 . 25 

4 

1 ~:o:o: 1 

:.:?.5:· 2 
Time 

. · . .5.0 . . 3 

. 25 4 

. 25 5 

Figure 1. Evader "spreads" unit probability over 4 cells. Cells not feasible for 

the searcher are shaded. 

Since the searcher can obtain nothing on the first 2 opportunities and at most .25 per look on the 

third and subsequent opportunities, v2 (T) ~ (T- 2)/4 for T 2: 2. Therefore A"2 2: .5. In fact 

vn(T):::; (T- n)j2n forT 2: n because evader spreading is feasible for any n, so A"n 2: .5 for n 2: 1. 

Searcher spreading is also feasible here. Against searcher spreading the evader's best strategy 

is to simply remain stationary, in which case there is no payoff for the first 2n - 1 time periods. 

Therefore vn(T) 2: (T- (2n - 1)) /2n for T 2: 2n- 1, and hence ]( n :::; (2n - 1 )/2n. Thus 

2n- 1 
.5 :::; ]( n :::; 

2
n :::; 1. (14) 

For all T, spreading is optimal for both sides when n = 1. It also turns out to be optimal for the 

evader when T = 2n, a game that is of some interest because 2n is the smallest value ofT such that 

the solution is not trivial. To see this, note first that we have already established that vn(2n) :::; .5. 

The searcher can also guarantee a payoff of .5, but by "rushing" rather than spreading. In rushing, 

the searcher essentially charges from one end to the other at top speed, except that for all t such 

that 2 :::; t :::; 2n he must be equally likely to occupy cells t and t - 1; the split is required to 



prevent the possibili ty that t h <:> evader might pass by witltout coincideun·. By ru slti11g. tlt(• sf•arcltPr 

guarantees th at t he probability of a coincidPnCf' somPwhPre in the first 2n rwriods is at least .. ).so 

Vn( 2n ) 2: .5 . Therefore Vn(2n) = .5. siuce the opposite iJII•quality has alread~· bPen establislted. 

Obviousl? the search er could continually rush from one PHd to the other. obtaining a payoff 

of .5 for every 2n tim e periods. This is not attrac tive when Tis largP, however, siuce a uuiform 

distribution will in the long run obtain a pa~·off of 1/2n per time period. The seardtr>r's dilr>mm<J 

is that rushing and spreading each have t heir attractions. Cnfortunatel~· tlv' two stratPgiPs are 

incompatible in that rushing retains a concentrated distribution, wheres spreading aims for unifor­

mity. Thi s dilemma does not exist for the evader. since spreading is optimal for T = 2n aud also 

attractive in the long run. One might therefore expect that Kn would be closer to . .5 than to 1 

in (12). Thi s turns out to be the case. Table 1 shows A'n for 1 :S n :S 6 as established with lin­

ear programming formulations generated by the General Algebraic ~I odeling System ( CA~l S) and 

solved with MIN OS ( IVIodular In-core Nonli near Optimization System) on the ~PS IB~l 30:33:\P 

mainframe computer. 

n ]\' n Tn 

1 .5000 2 

2 .535 7 6 

3 . .5431 10 

4 .5440 13 

5 .5459 14 

6 .. 54.59 19 

Table 1. A-n and Tn for n = 1, .... 6. 

Additionally Tn is li sted , which is the first ti m <:> both probability distributions become uniform. Tr. 

is remarkabl)• close t o 3n, bu t is not 3n exactl~·. \Yhen n = 3. player 1 can only force a payoff of 

9/6- . .5433 at t ime 9 if unifornu ty at time 9 is fo rced. 

Figure 2 shows how the searcher's probabili t y dist ribution p(·, ·)evolves with time whe11 there 

are 2n = 12 cells and Ti s 19 or larger. The first six ti me periods are not shown because p(t. t) = 1 for 

timet :S 6; the search er moves forward at top speed as long as contact with th<:> evader is physically 

impossible . Equilibrium first appears at t ime 19. T he searcher's motion might reasonably be 

characterized as a compromi se be n veen rushing and spreading. 

Figure 3 shows the evader's probability di stribution q(·. ·). The highest probability is in cell 

12 at time 11 , the las t t ime at which the searcher is guaranteed not to be there. That probability 

( .306) is evenl~· divided bet\veen cells 11 a nd 12 at t ime 12. and then spreads out from then'. The 

equilibrium di stributi on fir st appears at tim e 18. J\o te t hat the probabilit~· in low numben'd Cf'lb 

goes through a m ax imum. T his also happens wi th th e searcher (p(1.17) = .0'..:90 > ]J( 1. E.l) = 

.0833 ). but mu ch more weakl ~ -. 
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Figure 2. Searcher 's ProbabiJi ty Distribution Evoj ving with Time. 
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6. A Two-Dimensional Example 

Now consider an 8-time period problem where a searcher and a evader move over a 5 X 5 grid of cells. 

The searcher begins in the upper left cell and the evader begins in the lower right cell. The searcher 

detects the evader with certainty if they share the same cell. Both players can move between cells 

in a single time period if the cells share a side or a corner. This problem has approximately 381,000 

pure strategies (i.e.; feasible paths) for each player. It can be solved with linear programming but 

is large enough to make the Brown-Robinson method attractive-especially if a microcomputer 

solution is desired. 

The Brown-Robinson procedure for this problem was programmed in Fortran 77 on a Mac­

intosh Ilx computer. After 40,000 fictitious plays, mixed strategies for both sides were generated 

which bounded the value of the game between .1845 and .1938. On this microcomputer, approxi­

mately 5 fictitious plays per second were accomplished. Figure 4 indicates the rate of com·ergence 

of the bounds. 

0.5 

0.4 

Expected 0.3 

Payoff 0.2 

0.1 

0.0 
0 2000 4000 6000 8000 10000 

Number of Game Plays 

Figure 4. Bounds on the Value of the Game Generated by Fictitious Play. 

The same problem was solved exactly using linear programming. Required were 1383 \·ariables 

and the same number of constraints. An optimal solution was obtained after 2385 pivots and used 

approximately 410 CPU seconds on the NPS mainframe. The value of the game is .1891. Optimal 

marginal distributions for the searcher and evader (X 1000) are shown in Figures 5 and 6. 

Since any u(·, ·. ·) and v(·, ·, ·) will be optimal if they satisfy the path constraints and have 

optimal marginal distributions. it is reasonable to suspect that this problem might have many 

optimal solutions. This, in fact, is the case. Even the marginals are not unique. For example. 

any marginal distribution for the evader at time 2 is optimal if it "connects" optimal marginals at 

times 1 and 3. Figures 5 and 6 show optimal solutions with diagonal symmetry, but this symmetry 

was forced for esthetic reasons by adding additional constraints. 

In this problem, the equilibrium distribution of .04 in each cell is reached at time 8 for both 

players. For the evader, this distribution is a feasible extension of his optimal marginal distribution 

at time 6. \Vere that true at time 6 for the searcher as well, then equilibrium would have been 

reached one time period earlier at time 7. Instead the evader concentrates his effort at time 7 



Time Period 1 2 ·1 

1000 I I 
i oo:o 125,125 

1.000 125 1251125
1 

125 125,125 

I I I 

5 6 7 8 

3 3 : €1.. 61 5 5 :47 47: 47 18 41 .41 41 . 41 40. 40. 40 40 I 4C I 

3 3 3 ·6i. 6-i· 5 5 47 47: 47 . 41' 41 4i 41 41 4CJ 40 140 40 1 40 

3 3 3 :61 61 47 47 47 47 . : 47 . 41' 41 41 41 41 40 40 40 i 40 40 1 

.61 : 61 . 6i : .61 61 '47 47. .4 .7: 4 7. . 47 41 41 41 41 4i 40 .. 40 40 40 40 

61< 61 : 61 -61 61 .47: 47 47 47 : 47 41 41 41 4.1 41 40 40 40 ~0 .;o 

Figure 5. Searcher's Marginal Di st ribution (xlOOO). 

Time Period 1 2 3 4 

I I 
12 12 1~0 

"--' 
I 

1.43 r43 12 12 12 1291 

5:0o 143 143 i 43 12 12 12 ::.29 1 

1000 500. 143 143 129 129 1
120 .. ">0 
- J,-L..;.~ 

5 6 

12 12 :56 56 25 25 43 43: 43 99 38 .38 3.8 38 40 . .40' 40 14C L" .\, 

12 12 12 56 56 25 25 43 43: 43 -38 38 : 38 3:8 38 40 ' 40 40 I 40 4CI 
I 

12 12 12 56 :s.6. 43 43 43 43 43 38 :38 38 38 38 40 1 40 40 I 40 ! .; o 
I 

:56: : 56. 56· :S6 :5 6. ·43· 43 :. 43 43 43 38. .38 . 38 38 38 40 40 40 40 140 
I 

·56 : :s6 56: : .S6. 56 43 43. 43 43 43 :38 38 38 38 38 40 40 40 40 I 40 
I 

Figure 6 . E\'adcr's I\1arginal Di stri bution (xlOOO). 



in the upper left-hand corner. taking advantage of a low searcher marginal level there. For all 

times t ~ 8, the equilibrium distribution is optimal for both players, and the value of the game is 

.1891 + .04(t - 8). 
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